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EXERCISES

1. Find the arc length of the following parametrized curves:
a. g(t) = (acost, asint, bt), t € [0, 2.
b. g(t) = (3t —t, ), t € [0,2].
c. g(t) = (logt, 2t, t?),t € [1,€].
d. g(t) = (6t, 4t3/2, —413/2 3t2),t € (0,2].
2. Express the arc length of the following curves in terms of the integral

/2
E(k) = V1-k?sin’tdt (0<k<1),
0

for suitable values of k. (E(k) is one of the standard elliptic integrals, so
called because of their connection with the arc length of an ellipse.)
a. An ellipse with semimajor axis a and semiminor axis b.
b. The portion of the intersection of the sphere 22 + y2 + 2% = 4 and the
cylinder z? + y? — 2y = 0 lying in the first octant.
3. Find the centroid of the curve y = coshz, -1 <z < 1.
4. Compute [ /zds where C is parametrized by g(t) = (2cost, 2sint, ),
0<t<2m
5. Compute [ F - dx for the following F and C:
a. F(z,y,2) = (yz, 2%, zz); C is the line segment from (0,0,0) to (1, 1,1).
b. F is as in (a); C is the portion of the curve y = z2, z = 23 from (0, 0,0)
to (1,1,1).
c. F(z,y) = (z —y, ¢ +y); C is the circle z2 4 y? = 1, oriented clockwise.
d. F(z,y) = (z%y, z3y?); C is the closed curve formed by portions of the
line y = 4 and the parabola y = z?, oriented counterclockwise.
6. Compute the following line integrals:
a. [o(ze ¥dz + sinwz dy), where C is the portion of the parabola y = 22
from (0,0) to (1,1).
b. [o(ydz + zdy + zydz), where C is given by « = cost, y = sint, z = ¢
with0 <t < 27,
c. [o(y*dz — 2z dy), where C is the triangle with vertices (0,0), (1,0), and
(1,1), oriented counterclockwise.
7. Let F : R* — R™ be a continuous map, and let C be a C*! curve in R™.
a. Deduce from Proposition 5.8 that | [, Fds| < [, |F|ds.
b. In the case m = n, show that | [, F - dx| < [, |F|ds.
8. Prove in detail that arc length, as defined for rectifiable curves, is additive; that
is, if C, C}, and C are the curves parametrized by g(t) for ¢ € [a, b], t € [a, ],
and t € [c,b], then L(C) = L(Cy) + L(Cy).
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9. Let g(t) = (g(t),h(t)) be a C' parametrization of a plane curve. Given a
partition P = {tg,...,ts} of [a,b], the distance between two neighboring
points g(t;—1) and g(t;) is

V0a(t5) = glti-1)12 + [h(t;) — h(ts-)]2.

Use the mean value theorem to express the differences inside the square root in
terms of ¢’ and &/, and then use Exercise 9 in §4.1 to give an alternate proof of
Theorem 5.11. (Exactly the same idea works for curves in R".)

5.2 Green’s Theorem

Green's theorem is the simplest of a group of theorems — actually, they’re all
special cases of one big theorem, as we shall indicate in §5.9 — that say that “the
integral of something over the boundary of a region equals the integral of something
else over the region itself.” To state it, we need some terminology.

A simple closed curve in R" is a curve whose starting and ending points co-
incide, but that does not intersect itself otherwise. More precisely, a simple closed
curve is one that can be parametrized by a continuous map x = g(t), a < t < b,
such that g(a) = g(b) but g(s) # g(t) unless {s,t} = {a,b}.

We shall use the term regular region to mean a compact set in R™ that is the
closure of its interior. Equivalently, a compact set S C R™ is a regular region if
every neighborhood of every point on the boundary 8.5 contains points in S, For
example, a closed ball is a regular region, but a closed line segment in R" (n > 1)
is not, because its interior is empty.

Now let n = 2. We say that a regular region S C R? has a piecewise smooth
boundary if the boundary 0S5 consists of a finite union of disjoint, piecewise
smooth simple closed curves, where “piecewise smooth” has the meaning assigned
in the previous section. (We thus allow the possibility that S contains “holes,” so
that its boundary may be disconnected.) In this case, the positive orientation on 95
is the orientation on each of the closed curves that make up the boundary such that
the region S is on the left with respect to the positive direction on the curve. More
precisely, if x is a point on 85 at which 8§ is smooth, and t = (¢, {3) is the unit
tangent vector in the positive direction at that point, then the vector n = (tz, —t1),
obtained by rotating t by 90° clockwise, points out of S. (That is, x + en ¢ S for
small ¢ > 0.) See Figure 5.4.

If F = (F1, F») is a continuous vector field on R2, we denote by

F.dx or Fidz, + Fydzs
as as
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Hence, by applying Green’s theorem to the rotated field F, we obtain the following
result:

5.17 Corollary. Suppose S is a regular region in R? with piecewise smooth bound-
ary 85, and let n(x) be the unit outward normal vector to &S at x € 9S. Suppose
also that F is a vector field of class C* on S. Then

(5.18) f F- nds—// (BF‘ aF?) dA.
as 32}1 3172

Let us see what Green’s theorem says when F is the gradient of a C* function
f,sothat Fy = 8, f and F, = 05 f. Formula (5.13) gives

[ v5-ix= [[ @ans-moraa= [[ 0an=o

This is no surprise; it is easy to see directly that the line integral of a gradient over
any closed curve vanishes. Indeed, if the curve C is parametrized by x = g(t) with
g(a) = g(b), then by the chain rule,

. , bg
/ch'dx=/n Vf(s(t))-g(t)dt———_/; —f(8(t) dt
= f(g()) — f(g(a)) = 0.

The formula (5.18) gives a more interesting result. V f - n is the directional deriva-
tive of f in the outward normal direction to 85, or normal derivative of f on 95,
often denoted by 8f /dn; and (29) says that

asaﬂ /f (62f 31.:) g

The integrand on the right is the Laplacian of f, which we encountered in §2.6 and
which will play an important role in §5.6.

EXERCISES

1. Evaluate the following line integrals by using Green's theorem.
a. The integral in Exercise 5c in §5.1.
b. The integral in Exercise 6c in §5.1.
c. [ol(z? + 10zy + y?) dz + (52 + 5zy)dy], where C is the square with
vertices (0,0), (2,0), (0,2), and (2, 2), oriented counterclockwise.
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d. [;s(3z%siny?dr + 2z3y cosy® dy), where S is any regular region with
piecewise smooth boundary.
2, Let S be the annulus 1 < 22 +3? < 4. Compute [5¢(zy® dy — z%y dz), both
directly and by using Green’s theorem.

3. Find the positively oriented simple closed curve C that maximizes the line
integral [[y® dz + (3z — 2%) dy].

4. Use Green's theorem as in Example 3 to calculate the area under one arch of
the cycloid described parametrically by z = R(f — sint), y = R(1 — cos t).

5. LetS = {(z,9) :a <z <b 0<y< f(zx)}, where f is a nonnegative C'!
function on [a, b]. Explain how the formula A = — [,y dz for the area of §
in Example 3 leads to the familiar formula 4 = fub f(z)dz

6. Let S be a regular region in R? with piecewise smooth boundary, and let f and
¢ be functions of class C? on S. Show that

agds-—f[ [f(82g + 829) + Vf - Vg] dA.

7. The point of this exercise is to show how Green’s theorem can be used to de-
duce a special case of Theorem 4.41. Let U, V be connected open sets in R?,
and let G : U — V be a one-to-one transformation of class C' whose deriva-
tive DG (u) is invertible for all u € UU. Moreover, let S be a regular region in V'
with piecewise smooth boundary, let A be its area, and let T = G~ 1(S5).

a. The Jacobian det DG is either everywhere positive or everywhere negative
on U; why?

b. Suppose det DG(u) > O forall u € U. Write A = [, ydz as in Ex-
ample 3, make a change of variable to transform this line integral into
a line integral over 97", and apply Green’s theorem to deduce that A =
[Jdet DG dA.

c. By a similar argument, show that if det DG (u) < 0 for all u € U, then
A = - [[det DGdA = [[;|det DG|dA. Where does the minus sign
come from?

5.3 Surface Area and Surface Integrals

In this section we discuss integrals of functions and vector fields over smooth sur-
faces in R®. Like line integrals, surface integrals come in two varieties, unoriented
and oriented. On a curve the orientation is a matter of deciding which direction
along a curve is “positive’; on a surface it is a matter of deciding which side of the
surface is the *“positive” side. The convenient way of specifying the orientation of
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Finally, as a practical matter we need to extend the ideas in this section from
smooth surfaces to piecewise smooth surfaces. Giving a satisfactory general def-
inition of a “piecewise smooth surface” is a rather messy business, and we shall
not attempt it. For our present purposes, it will suffice to assume that the surface S
under consideration is the union of finitely many pieces Sy, ..., Sk that satisfy the
following conditions:

i. Each S; admits a smooth parametrization as discussed above.
ii. The intersections S; N S; are either empty or finite unions of smooth curves.

We then define integration over S in the obvious way:

f/sfdA=$/j;_fdA.

Condition (ii) guarantees that the parts of S that are counted more than once on
the right, namely the intersections S; N S;, contribute nothing to the integral, by
Propositions 4.19 and 4.22.

EXAMPLE 3.

a. Let S be the surface of a cube; then we can take S, ..., Ss to be the faces
of the cube.

b. Let S be the surface of the cylindrical solid {(z,y,2) : z2+y? < 1, |2| <
1}. We can write S = Sy U S U S5 where S; and S; are the discs forming
the top and bottom and Sj is the circular vertical side. S; and S; can be
parametrized by (z,y) — (z,y, 1) and (z,y) = (z,y, —1) with 2% +42 <
1, and S3 can be parametrized by (0, z) — (cosf,sin8,z) with0 < 8 <
27 and |z| < 1. If one wishes to use only one-to-one parametrizations with
compact parameter domains, one can cut S3 further into two pieces, say
the left and right halves defined by 0 < @ < mand 7 < € < 2.

Remark. In condition (ii) above, we have in mind that the sets S; will intersect
each other only along their edges, although there is nothing to forbid them from
crossing one another. For example, S could be the union of the two spheres S; =
{x:|x| =1} and S3 = {x: [x — i| = 1}. This added generality is largely useless
but also harmless.

EXERCISES

1. Find the area of the part of the surface z = zy inside the cylinder z2 +y? = a2.
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2. Find the area of the part of the surface z = z%+y? inside the cylinder 2% +y% =

a?.

3. Suppose 0 < a < b. Find the area of the torus obtained by revolving the circle
(z — b)? 4 22 = a? in the zz-plane about the z axis. (Hint: The torus may be
parametrized by z = (b + acosp)cosf, y = (b+ acosyp)sinb, z = asinp,
with 0 < ¢,0 < 27.)

4. Find the area of the ellipsoid (z/a)? + (y/a)? + (2/b)? = 1.

5. Find the centroid of the upper hemisphere of the unit sphere z2 + y? + 2% = 1.

6. Compute [[5(z%+y?) dA where S is the portion of the sphere 22 +y?+ 22 = 4
with z > 1.

7. Compute [[4(z? + y* — 222) dA where S is the unit sphere. Can you find the
answer by symmetry considerations without doing any calculations?

8. Calculate [[ F - ndA for the following F and S.

a. F(z,y,2) = x2i — zyk; S is the portion of the surface z = zy with
0<z<1,0<y< 2 oriented so that the normal points upward.

b. F(z,y,2) = 2%+ zj — yk; S is the unit sphere 2% + y? + 22 = 1, oriented
so that the normal points outward (away from the center).

c. F(z,y,2) = zyi + zj; S is the triangle with vertices (2,0, 0), (0,2,0),
(0,0, 2), oriented so that the normal points upward.

d F(z,y,2) = 2%k; S is the boundary of the region 22 +9y? < 1,a < z < b,
oriented so that the normal points out of the region. (You should be able to
do this in your head.)

e. F(z,y,2) = zi+ yj+ zk; S is the boundary of the region 2% + y* < 2 <
/2 — 22 — y2, oriented so that the normal points out of the region.

5.4 Vector Derivatives
Let V denote the n-tuple of partial differential operators 9; = 9/0x;:
V = (6y,...,0n).

We are already familiar with this notation in connection with the gradient of a C
function on R™, which is the vector field defined by

grad f=Vf=(df,...,0.f)

We can also use V to form intezesting combinations of the derivatives of a vector
field, via the dot and cross product. If F' is a C! vector field on an open subset of
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It is an important fact that the first two of these always vanish, by the equality
of mixed partials:

(5.30) curl(grad f)
= (0203f — 0302 f)i+ (8301 f — 0103f)j + (0102f — 0201 f)k =0

and

(5.31) div(curlF)
=& (ast - 83F2) -+ 62(6314"; - 81F3) + 33(61F2 - agFl) =10,

Schematically, we have

scalar  grad vector curl vector div scalar
< —_— — —_— o
functions fields fields functions

and (5.30) and (5.31) say that the composition of two successive mappings is zero.
The third combination, div(grad f), which makes sense in any number of di-

mensions, is of fundamental importance for both physical and purely mathematical

reasons. It is called the Laplacian of f and is usually denoted by V2 f or A f:

(5.32) V2f = Af =div(grad f) = 82f +--- + 2f.

The last two combinations are of less interest by themselves, but together they yield
the Laplacian for vector fields in R3:

(5.33) grad(divF) — curl(curl F) = V?F = (V2F)i+ (V2FR)j + (V2R)k.

The verification of (5.33) is a straightforward but somewhat tedious calculation that
we leave to the reader.

EXERCISES

1. Compute the curl and divergence of the following vector fields.
a. F(z,y,2) = zy%i + zyj + zyk.
b. F(z,y,z) = (sinyz)i+ (zzcosyz)j + (zy cosyz)k.
c. F(z,y,2) = 2%zi + 4dxyzj + (y — 3zz?)k.
2. Compute the Laplacians of the following functions.
a. f(z,y) = 2% - 10z%y? + 5z°.
b. f(z,y,2) = zy? — 4y2.
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c. f(x)=|x|* (x € R*\ {0}, a € R). (Hint: Use Exercise 9 in §2.6.)

d. f(z,y)= log(mz ¥ y2) ((z,y) # (0,0)).
3. LetF(z,y, z) = zi+yj+z2k. Show that for any a € R3, we have curl(axF) =
2a, div[(a - F)a] = |a|? and div[(a x F) x a] = 2|a/%.
Prove (5.24) and (5.25).
Prove (5.26) and (5.27).
Prove (5.28) and (5.29).
Prove (5.33).
Why is the minus sign in (5.29) there? That is, on grounds of symmetry, with-
out going through any calculations, why must the formula div(F x G) =
G - (curl F) + F - (curl G) be wrong?

9. Show that for any C? functions f and g, div(grad f x grad g) = 0.

® N ;s

5.5 The Divergence Theorem

The divergence theorem, also known as Gauss’s theorem or Ostrogradski’s the-
orem, is the 3-dimensional analogue of the version (5.18) of Green’s theorem; it
relates surface integrals over the boundary of a regular region in R? to volume inte-
grals over the region itself. The divergence theorem is valid for regions with piece-
wise smooth boundaries, but we shall allow the meaning of “piecewise smooth”
to remain a little vague; see the remarks at the end of §5.3. To formulate precise
conditions that encompass all the cases of interest would involve a rather arduous
excursion into technicalities, and the more retricted class of regions covered by the
following argument suffices for most purposes.

5.34 Theorem (The Divergence Theorem). Suppose R is a regular region in R3
with piecewise smooth boundary OR, oriented so that the positive normal points
out of R. Suppose also that F is a vector field of class C* on R. Then

(5.35) // F-ndA=[/fdideV.
R R

Proof. As with Green's theorem, we begin by considering a class of simple regions.
We say that R is zy-simple if it has the form

R={(z,y,2): (z,9) € W, p1(z,y) < z < pa(z,9) },

where W is a regular region in the zy-plane and ¢; and y are piecewise smooth
functions on W. We define the notions of yz-simple and zz-simple similarly, and
we say that R is simple if it is xy-simple, yz-simple, and zz-simple.
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This approximation becomes better and better as » — 0, and hence

(5.36) div F(a r-—pO 411‘1”3 [[]x-—al-—f B

The integral on the right is the flux of F across 9B, from the inside (B,) to the
outside (the complement of B,). If we think of the vector field as representing
the flow of some substance through space, the integral represents the amount of
substance flowing out of B, minus the amount of substance flowing in; thus, the
condition div F(a) > 0 means that there is a net outflow near a, in other words,
that F tends to “‘diverge” from a. (The effect is subtle, though: One has to divide
the flux by 72 in (5.36) to get something that does not vanish in the limit.) In any
case, the integral in (5.36) is a geometrically defined quantity that is independent
of the choice of coordinates; this gives the promised coordinate-free interpretation
of divF.

Among the important consequences of the divergence theorem are the follow-
ing identities.
5.37 Corollary (Green’s Formulas). Suppose R is a regular region in R® with
piecewise smooth boundary, and f and g are functions of class C* on R. Then

(5.38) ffaRng—ndA=ff[q(Vf-Vg+fV29)dV,
s /a (f99-gVf) -ndd= // fR (fV2g — gV2f) dV.

Proof. An application of the product rule (5.28) shows that div(fVg) =

Vg + f - V?g, so the divergence theorem applied to F = fVg yields (5.38). The
corresponding equation with f and g switched also holds; by subtracting the latter
equation from the former we obtain (5.39). O

The directional derivative V f - n that occurs in these formulas is called the
outward normal derivative of f on dR and is often denoted by df/dn.

EXERCISES

In several of these exercises it will be useful to note that if S, is the sphere of
radius r about the origin, the unit outward normal to S, at a point x € S, is just
r~!x. This is geometrically obvious if you think about it a little. Alternatively,
since S, is a level set of the function |x|2 = z2 + 32 + 22, we know that V(|x|?) =
2zi + 2yj + 2zk = 2x is normal to S, so the unit normal is [x|~'x = r~!|x| for
x € S,
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1. Use the divergence theorem to evaluate the surface integral [[ F-n dA for the
following F and S, where S is oriented so that the positive normal points out
of the region bounded by S.

a. F, S as in Exercise 8b in §5.3.

b. F, S as in Exercise 8¢ in §5.3.

c. F(z,y,2) = 2%+ y%j + z%k; S is the surface of the cube 0 < z,y, 2 < a.

d. F(z,y,2) = (z/a®)i+ (y/b*)j + (2/c?)k; S is the ellipsoid (x/a)? +
(y/b)* + (2/¢)* = 1.

e. F(z,y,2) = z% — 2zyj + z°k; S is the surface of the cylindrical solid
{(z,y,2) : (z,y) € W, 1 < z < 2} where W is a smoothly bounded
regular region in the plane with area A.

2. LetF(z,y,2) = (z? +y*+ 2?)(zi+ yj+ zk) and let S be the sphere of radius
a about the origin. Compute || fs F - n both directly and by the divergence
theorem.

3. Let R be a regular region in R® with piecewise smooth boundary. Show that
the volume of R is 3 [[,,, F - ndA where F(z, y, 2) = i + yj + zk.

4. Prove the following integration-by-parts formula for triple integrals:

1= [ff L[]

where n, is the z-component of the unit outward normal to JR. (Of course,
similar formulas also hold with z replaced by y and z.)

5. Suppose R is a regular region in R? with piecewise smooth boundary, and f is
a function of class C? on R.

a. Showmlf[aﬁgnidA=/va2fdv.

b. ShowmatifV2f=O,thcn/faRf%dA=f/fR1Vf|2dV.

6. Letx = (z,y,2) and g(x) = |x|~! = (22 + 4% + 22)~V/2,

a. Compute Vg(x) for x # 0.

b. Show that V2g(x) = 0 for x # 0. (Cf. Exercise 9 in §2.6.)

c. Show by direct calculation that [[¢(9g/8n) dA = —4n if S is any sphere
centered at the origin.

d. Since g/0n = Vg -n and Vg = div(Vg), why do (b) and (c) not
contradict the divergence theorem?

e. Show that [[,,(8g/dn)dA = —4n if R is any regular region with piece-
wise smooth boundary whose interior contains the origin. (Hint: Consider
the region obtained by excising a small ball about the origin from R.)
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7. Suppose that f is a C* function on R? that satisfies Laplace’s equation
Vi =1,

a. By applying (5.39) to f and g, with g as in Exercise 6and R = {x : € <
|x| < r}, show that the mean values of f on the spheres |x| = r and
|x| = e are equal. (Use Exercises 5a and 6.)

b. Conclude that the mean value of f on any sphere centered at the origin is
equal to the value of f at the origin. (Remark: There is nothing special
about the origin here. By applying this result to f(x) = f(x + a), which
also satisfies Laplace’s equation, we see that the mean value of f on any
sphere is the value of f at the center. The converse is also true; a function
that has this mean value property must satisfy Laplace’s equation.)

5.6 Some Applications to Physics

In this section we illustrate the uses of the divergence theorem by deriving some
important differential equations of mathematical physics. We make a standing as-
sumption that all unspecified mathematical functions that denote physical quantities
are smooth enough to ensure the validity of the calculations.

Flow of Material. We have previously alluded to an interpretation of a vector
field in terms of material flowing through space. We now develop this idea in more
detail.

Suppose there is some substance moving through a region of space — it might
be air, water, electric charge, or whatever. The distribution of the substance is given
by a density function p(x,t); thus p(x,t) dV is the amount of substance at time ¢
in a small box of volume dV" located at the point x = (z,y, z). The substance is
moving around, so we also have the velocity field v(x,t) that gives the velocity of
the substance at position x and time ¢.

Now consider a small bit of oriented surface dS (imagined, not physical) with
area dA and normal vector n located near the point x. (We shall picture dS as a
parallelogram, but its exact shape is unimportant.) At what rate does the substance
flow through this bit of surface?

First suppose that n is parallel to the velocity v = v(x,¢). We picture a small
box with vertical face dS and length |v| dt, where dt is a small increment in time,
as in Figure 5.8a. We assume that the box is sufficiently small so that that the
velocity and density are essentally constant throughout the box during the time
interval (¢, £ 4 dt). Then the substance that fiows through the surface d.S in the
time interval dt is just the contents of the box at time ¢. The volume of the box is
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density p, and the current density J. In suitably normalized units, they are

divE = 4mp, cur1E=—léiﬁB,
(330) 108 dn
divB =0, curlB= -— + —1J,
c ot c

where c is the speed of light. This is not the place for a thorough study of Maxwell’s
equations and their consequences for physics, but we wish to point out a couple of
features of them in connection with the ideas we have been developing. In what
follows we shall assume that all functions in question are of class C?, so that the
second derivatives make sense and the mixed partials are equal.

First, Maxwell’s equations contain the law of conservation of charge. Indeed,
by formula (5.30) we have

% = ;&;div %f— = ﬁ div(curl B) — divJ = — divJ,

and this is the conservation law in the form (5.41). Second, in a region of space
with no charges or currents (p = 0 and J = 0), by formula (5.33) we have

—— 0y Lo B _ 1B
V?E = V(divE) — curl(curlE) = 0 + Ccurl = e

and
1 OE 10°B

V?B = V(divB) — curl(curlB) = 0 — - curl — = 5 ——-.

(divB) — curl(curl B) sourl = = 5=

That is, the components of E and B all satisfy the differential equation

182f

c? o2’

This is the wave equation, another of the fundamental equations of mathematical
physics. It describes the propagation of waves in many different situations; here it
concerns electromagnetic radiation — light, radio waves, X-rays, and so on.

(5.51) Vif =

EXERCISES

Besides distributions of charge or mass in 3-space, one can consider distributions on
surfaces or curves (physically: thin plates or wires). The formula for the associated
potential or field is similar to (5.43) except that the triple integral is replaced by a
surface or line integral, and the density p represents charge or mass per unit area or
unit length rather than unit volume. In the following exercises, “uniform” means
“of constant density.”
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1. Consider a uniform distribution of mass on the sphere of radius r about the
origin. Show that
a. inside the sphere, the potential is constant and the gravitational field van-
ishes;
b. outside the sphere; the potential and field are the same as if the entire mass
were located at the origin.

2. Consider a uniform distribution of mass on the solid ball of radius R about the
origin. Show that the gravitational field at a point x is the same as if the mass
closer to the origin than x were all located at the origin and the mass farther
from the origin than x (if any) were absent. (Use Exercise 1.)

3. Consider a uniform distribution of charge on the z-axis, with density p (charge
per unit length).

a. Compute the electric field generated by this distribution. (The relevant
formula is similar to (5.43), but 1/|p — x| is replaced by the negative of its
gradient with respect to x, namely, (x — p)/|x — p|>.)

b. Show that the modification of (5.43) that presumably gives the potential
for this charge distribution is a divergent integral.

c. To resolve the difficulty presented by (b), we make use of the fact that
the defining property of the potential u, namely Vu = —E, only deter-
mines u up to an additive constant, so we may subtract constants from u
without affecting the physics. Consider instead a uniform distribution of
charge on the interval [~ R, R] on the z-axis with density p. Compute the
potential up generated by this distribution, and show that up — 2plog R
converges as R — oo to a function whose gradient is the negative of the
field found in (a). (This sort of removal of divergences by “subtracting off
infinite constants” is common in quantum field theory, where it is known
as renormalization.)

4. Prove the following two-dimensional analogue of Theorem 5.46: Suppose p is
a function of class C? on R? that vanishes outside a bounded set, and let

u(x) = [ p(x +y) logy| d%y.

Then u is of class C? and V2u = 27p. (The proof is very similar to that of
Theorem 5.46; see Exercise 2d in §5.4.)

5.7 Stokes’s Theorem

Stokes’s theorem is the generalization of Green’s theorem in which the plane is
replaced by a curved surface. The precise setting is as follows.
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Since u is the normal to D,, Stokes’s theorem gives

1
(5.58) (curlF(a)) -u = llna p—

F-dx,

where C, is the circle of radius € about a in the plane perpendicular to u, traversed
counterclockwise as viewed from the side on which u lies. This is the promised
coordinate-free description of curl F',

If we think of F as a force field, _f F - dx is the work done by F on a particle
that moves around C.. Thus (5.58) says ' that (curl F(a)) - u represents the tendency
of the force F to push the particle around C,, counterclockwise if (curl F(a)) - u
is positive and clockwise if it is negative (as viewed from the u-side).

EXERCISES

1. Use Stokes's theorem to calculate [,[(z — 2)dz + (z + y)dy + (y + 2) dz]
where C is the ellipse where the plane z = y intersects the cylinder 2 +y? = 1,
oriented counterclockwise as viewed from above.

2. Use Stokes’s theorem to evaluate [,[y dz+y* dy+ (z +2z) dz] where C is the
curve of intersection of the sphere 22 + y? + 22 = a? and the plane y + z = a,
oriented counterclockwise as viewed from above.

3. Given any nonvertical plane P pazallcl to the :.r:-axis let C be the curve of
intersection of P with the cylinder z? + y? = a2. Show that Jollyz —y) dz +
(zz + z) dy] = 2ma?.

4. Evaluate [[¢ curl F - ndA where F(z,y,z) = yi+ (z — 2232)j + zy’k and S
is the upper half of the sphere z2 + y? + 2% = a2,

5. Let F(z,y, z) = 2zi+2yj + (2% +y? + 2%)k and let S be the lower half of the
ellipsoid (z%/4) + (y%/9) + (22/27) = 1. Use Stokes’s theorem to calculate
the flux of curl F across S from the lower side to the upper side.

6. Define the vector field F on the complement of the z-axis by F(z,y,2) =
(—yi+zj)/(z? + ?).

a. Show that curl F = 0.

b. Show by direct calculation [ F - dx = 27 for any horizontal circle C
centered at a point on the z-axis.

c. Why do (a) and (b) not contradict Stokes’s theorem?

7. Let C, denote the circle of radius r about the origin in the z2-plane, oriented

counterclockwise as viewed from the positive y-axis. Suppose F is a C! vector
field on the complement of the y-axis in R’ such that [, F - dx = 5 and

curl F(z,y, 2) = 3j + (2i — zk)/(2? + 2%)%. Compute [, F - dx for every r.
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8. Let S be a smooth oriented surface in R® with piecewise smooth, compatibly
oriented boundary 8S. Suppose f is C' and g is C? on some open set contain-

ing S. Show that
/ ng-dxz//(Vf x Vg) -ndA.
as s

5.8 Integrating Vector Derivatives

In this section we study the question of solving the equations
grad f = G, curl F = G, divF =g

for f or F, given g or G. We first consider the equation Vf = G, and we begin
with a simple and useful result:

5.59. Proposition. Suppose G is a continuous vector field on an open set R in R",
The foillowing two conditions are equivalent:
a. If Cy and C, are any two oriented curves in R with the same initial point and
the same final point, then fcl G:-dx = sz G - dx.
b. If C is any closed curve in R, fC G-dx=0.

Proof. (a) implies (b): Suppose C starts and ends at a. Then C has the same initial
and final point as the “constant curve” Cy described by x(¢) = a, and obviously
Je, G - dx = 0 since dx = 0 on C;.

(b) implies (a): Suppose C; and C, start at a and end at b. Let C be the closed
curve obtained by following C, from a to b and then Cy backwards from b to a.
ThenU=fCG-dx=fClG—dx—fC!G-dx. O

A vector field G that satisfies (a) and (b) is called conservative in the region
R. (The word “conservative™ has to do with conservation of energy. If we interpret
G as a force field, condition (b) says that the force does no net work on a particle
that returns to its starting point.) A good deal of mathematical physics is based on
the following characterization of conservative vector fields:

5.60. Proposition. A continuous vector field G in an open set R C R" is conser-
vative if and only if G is the gradient of a C" function f on R.

Proof. If G = V f and C is a closed curve parametrized by x = g(t),a <t < b,
by the chain rule we have

b d
i 5/ (8(1)) dt

= f(g(b)) - f(g(a)) =0

b
[vr-ax= [ vre)-gd -
(&4 a
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field E vanishes only when there are no time-varying magnetic fields present. Only
in this case is E the gradient of a potential function. However, div B = 0 always
(this expresses the fact that there are no “magnetic charges™), so B is the curl of a
vector potential A. We then have

10A 16B
curl (E+ 279?) =curlE + -y =0,

so E + ¢ 18,A is the gradient of a function —p. The four-component quantity
(¢, A) = (v, Ay, Ag, A3) is called the electromagnetic 4-potential. 1t is best re-
garded as a vector in 4-dimensional space-time, with ¢ being the time component,
in the context of special relativity.

EXERCISES

1. Determine whether each of the following vector fields is the gradient of a func-
tion f, and if so, find f. The vector fields in (a)—(c) are on R?; those in (d)—(f)
are on R®, and the one in (g) is on R®. In all cases i, j, k, and 1 denote unit
vectors along the positive z-, y-, z-, and w-axes.

G(z,y) = (2zy + 2?)i + (z? — v?)j.

G(z,y) = (3y* + 5z'y)i + (25 — 62y)j.

G(z,y) = (2¢**siny — 3y + 5)i + (e** cosy — 3z)j

G(z,y,2) = (yz — ysinzy)i + (zz — zsinzy + zcosyz)j + (zy +

y cos yz)k.

e G(z,y,2)=(y—2)i+(z-2)j+(z-yk

f. G(z,y,2) = 2zyi+ (z® + log 2)j + ((y + 2)/2)k (2 > 0).

g G(z,y,z,w) = (zw? + yzw)i+ (z2w + yz% — 2e¥+2)j + (zyw + y?2 -
e?¥*+? — wsin zw)k + (zyz + z%w — zsin zw)l.

.0 o

2. Determine whether each of the following vector fields is the curl of a vector
field F, and if so, find such an F.
a. G(z,y,2) = (2° + y2)i + (y — 32%)j + 4%k
b. G(z,y,2) = (zy + 2)i+zzj — (yz+ o)k
c. G(z,y,2) = (ze=="%" = 62)i + (5y + 22)j + (2 — 2™ *')k.
3. Let R be a bounded convex open set in R3. Show that for any C? vector
field H on R there exist a C? function f and a C? vector field G such that
H = grad f + curl G. (Hint: Solve V2f = divH.)
4. Let F = Fji + F,j be a C! vector field on S = R? \ {(0,0)} such that
01 Fy = 0 F) on S (but F may be singular at the origin).
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a. Let C, be the circle of radius r about the origin, oriented counterclockwise.
Show that fcr F - dx is a constant « that does not depend on r. (Hint:
Consider the region between two circles.)

b. Show that [, F' - dx = a for any simple closed curve C, oriented counter-
clockwise, that encircles the origin.

c. Let Fy = (zj — i) /(z? + y?) as in Example 1. Show that F — (a/27)Fg
is the gradient of a function on S. (Thus, all curl-free vector fields on §
that are not gradients can be obtained from F by adding gradients.)

5.9 Higher Dimensions and Differential Forms

Green’s theorem has to do with integrals of vector fields in the plane, and the di-
vergence theorem and Stokes’s theorem have do do with integrals of vector fields
in 3-space. What happens in dimension n? There are a couple of things we can say
without too much additional explanation.

First, the obvious analogue of the divergence theorem holds in R"™ for any
n > 1. To wit, if R is a regular region in R™ bounded by a piecewise smooth
hypersurface R, and F is a C"* vector field on R, then

f F.ndV"'J://--:/diVFdV".
dR R

Here dV™ is the n-dimensional volume element in R™ and dV™~! is the (n — 1)-
dimensional “area” element on R. The “vector area element” ndV"~! is given
by a formula analogous to the one in R®. Namely, if (part of) R is parametrized
by x = G(u1,...,Un-1), then

1 - e
BG1 - &iGn
w9 =k | T i [ T S

alGﬂ--I 3n+IGn

where ey, . .., e, are the standard basis vectors for R". (The reader may verify that
in the case n = 2, these formulas yield Green’s theorem in the form (5.18).)

Second, the analogue of the divergence theorem in dimension 1 is just the fun-
damental theorem of calculus:

£(6) = f(a) = /{ FCE

On the real line, vector fields are the same thing as functions, and the divergence of
a vector field is just the derivative of a function. A regular region in R is an interval



